Guaranteed Proofs Using Interval Arithmetic

Marc Daumas, Guillaume Melquiond, an@$ar Muioz

Abstract The bounds: andb are called thdower boundandupper
boundof x, respectively. In this paper, we are interested in
This paper presents a set of tools for mechanical rea- rational interval arithmetic, i.e., the boundsandb are as-
soning of numerical bounds using interval arithmetic. The sumed to be rational numbers. In the following, we use the
tools implement two techniques for reducing decorrelation: first letters of the alphabet b, . .. to denote rational num-
interval splitting and Taylor's series expansions. Although bers, and the last letters of the alphahetz, y, = to denote
the tools are designed for the proof assistant system PVSarbitrary real variables. We use boldface for interval vari-
expertise on PVS is not required. The ultimate goal of the ables. Furthermore, i is an interval variablex denotes
tools is to provide guaranteed proofs of numerical proper- its lower bound and denotes its upper bound. By abuse
ties with a minimal human-theorem prover interaction. of notation, and when it is clear from the context, a rational
numbera is identified with the intervala, a.
The four basic operations in interval arithmetic are de-
1 Introduction fined such that they satisfy tleclusion property
x@y = {r@ylzrex yey}
Deadly and disastrous failures [4, 7, 12] confirm the _ .
shared belief that the traditional peer-review process is notWhere® = {-+, —, x, +}.t This property is fundamental to
sufficient to guarantee correctness of published proofs andntérval arithmetic. It guarantees that the evaluation of an
software [11]. Despite this belief, mechanical theorem EXPression using interval arithmetic is a correct approxima-
provers and proof assistants are not widely used in the aplion of the exact real value.
plied mathematics community. Part of the problem is the Interval arithmetic isub-distributivei.e.,.x x (y +z) C
lack of user friendly interfaces that results on steep learn-X Xy +xxz. Inthe general case, the inclusion is strict. This
ing curves. This paper presents a set of tools for mechani-May have surprising effects, for instance x is, in general,
cal reasoning of numerical bounds using interval arithmetic. different from the intervab, e.g.,[0,1] — [0,1] = [-1,1].
The goal is to provide guaranteed formal proofs of numeri- This effect is also calledecorrelationand it is due to the
cal properties with a minimum effort. fact that interval identity is lost in interval arithmetic.
Interval arithmetic has been used for decades as a stan- Consider the functionf(x) = x x (1 —z). A SlimP'e
dard tool for numerical analysis on engineering applica- an?ly3|slreveals that reaches its maximum at = 5 with
tions [8,15]. In interval arithmetic, operations are evaluated f(3) = 1 Ifze [0, 1], the minimums are reached at the
on range of numbers rather than on real numbers. Formally,tounds withf(0) = (1) = 0. Hence,
anintervalx = [a, b] is the set of real numbers between

andb, i.e., Ve el0,1]: zx(1—-z)¢€ {O, ﬂ .

[,] {zlase<b} On the other hand, the interval expressiorx (1 — x),

*M. Daumas flarc.Daumas@ens-lyon.fr) and G. Melquiond wherex = [O’ 1]' eve_lluates t([I), 1]' The _mCIU_SIOH property
(Guillaume.Melquiond@ens-lyon.fr) are with the LIP Com- guarantees thad, 1] is a correct approximation ¢f(x), for
puter Science Laboratory, UMR 5668 CNRS-ENS Lyon-INRIA, France. z € x. However, as this example shows, it may not be the
César Moz (munoz@nianet.org) is with the National Institute of best one:
Aerospace, 144 Research Drive, Hampton, VA, USA. This work was par-
tially supported by the National Aeronautics and Space Administration un- 1
der NASA Cooperative Agreement NCC-1-02043, by the French National {0,]
Center for Scientific Research under CNRS PICS grant 2533, and by the 4
Department of the Development and the Department of the Industrial Re-
lations (DirDRI) of the INRIA. 1In the case of division, it is assumed tilag y.

c j0,1].

=

There are a few techniques to reduce the effect of decor- The library Interval is a set of PVS theories defining ra-
relation. They usually require arithmetic manipulations of tional interval arithmetic. The library provides a set of proof
the interval expressions and a fine analysis of the intervalstrategies that automate interval reasoning, specially with
variables. For example, an expert will probably note that respect to decorrelation effects.

f(x)is equivalent to; — (z — 1)?, and that the correspond-

ing interval expressiof — (x — %)2 does not suffer from 2.1 Basic definitions

decorrelation. The proof that a particular numerical expres-

sion satisfies some given bounds is not necessarily difficult, Listing 1 shows a few definitions from the PVS theory

but it can be cumbersome, tedious, and, definitively, error Interval . Dots are used to simplify the presentation and

prone. hide some technical parts. Comments start with the symbol
This paper presents a set of tools that support mechanieand extend to the end of the !ine. The theory defines the

cal proof checking of numerical bounds using interval arith- type Interval and mathematical variablesy of type

metic. The tools implement two techniques to reduce decor-rea@l (real numbers)X,Y of typeInterval , andn of

relation. The first technique is based on interval splitting. tyPenat (natural numbers).

The second technique is based on Taylor's series expan- Intervals are stored as pairs of real numHersy/]

sions. The tools are designed for the verification system For instance, the PVS objei¢,1]] represents the inter-

PVS2 which is developed by SRI International [16]. How- Val [0, 1]. If Xis a PVS intervallb(X) is the lower bound

ever, minimal PVS expertise is required to use our tools as@ndub(X) is the upper bound of. The propositions: € x

most of the technical burden of proving properties in a proof @ndx C y are writtenx ## X andX << Y, respectively.

assistant system is hidden from the user. A C++ library Furthermore, the propositiod > x states that all values

generates proof obligations and proof scripts, in the form of In X are strictly greater thar; similarly for X > x, X <

PVS files, for a given numerical problem. The files are pro- X, andX < x.

cessed by PVS in batch mode and a summary of the status The four basic interval operations are defined as in [9]:

of the proofs is printed. User interaction with the theorem

prover is minimized. This approach is usually referred as x+y = [x+y,x+7¥],
invisible formal methodg21]. Xx-y = [xX-¥,X-yl,
The rest of this paper is organized as follows. Section 2 XXy = [min{xy,Xxy,Xy,Xy},

presents an overview of the PVS interval arithmetic library.
The usage of the library is illustrated with the toy exam-
plex x (1 —=z) € [0,1] for z € [0,1]. This example is X<y
reused in Section 3 to show how the precision can be im-
proved by a simple interval splitting technique. Section 4
motivates a Taylor’s series expansion technique with an ex-
ample taken from a critical aeronautical application. That
technique guarantees that an implemented polynomial ap-

max{Xy, Xy, Xy,Xy}],

11 e
xx[,}, if yy > 0.
yy -

We also define negative, absolute value, square, and power
functions as follows:

. . . o —-X = [_i7 _K]a
proximation is close to about one unit in the last place (ulp)) - - L
of the exact transcendental function. The relative error is X = [min{[x[, x|}, max{[x], [x[}], if xx > 0.
exactly bounded byt.36 x 1076, Section 5 presents the x| = [0,max{[x|,|X|}], if xx<O0.
C++ library that generates the proof obligations and proof 1] if n=0,
scripts of the examples in sections 3 and 4. [x", X" if x>0 or
. odd?n),
. . : = X", x"] if X <0 and

2 APVS Library for Interval Arithmetic = ~

even?n),

[0, max{x"™,X"}] otherwise
The Prototype Verification System (PVS) [16] is a me-
chanical proof checker that provides a strongly typed spec-Interval unionx Uy, written in PVSX U Y, is defined as
ification language and a theorem prover for higher-orderthe smallest rational interval that contains batandy.
logic. PVS developments are organized in theories. A the- All these operations are defined such that they satisfy
ory is a collection of mathematical and logical objects such the inclusion property. Indeed, the lemmas shown in List-

as function definitions, variable declarations, axioms, anding 2 are, among many others, provided by the library and
lemmas. formally verified. Free variables are implicitly quantified

universally. As we will see, these properties are the basis of
2pVs is available fronittp://pvs.csl.sri.com . the automated support for interval reasoning.

PVS Listing 2 Inclusion properties (1)

PVS Listing 1 Basic definitions

% interval.pvs
Interval : THEORY
BEGIN

Interval : TYPE = ...

X,y : VAR real
X,Y : VAR Interval
n . VAR nat

+(X,Y): Interval = [|Ib(X)+Ib(Y),
ub(X)+ub(Y)|]
-(X,Y): Interval = [|Ib(X)-ub(Y),
ub(X)-Ib(Y)]
-(X) : Interval = [|-ub(X),

-Ib(X))I]
*(X,Y): Interval =
I(X)Y): Interval = X * [|1/ub(Y),
1/1Ib(Y)]]

Abs(X): Interval =
Sq(X) : Interval = ...
“(X,n): Interval = ...

U(X,)Y) : Interval = [|min(Ib(X),Ib(Y)),

max(ub(X),ub(Y))|]

Add_sharp : LEMMA
x ## X AND y ## Y = x+y ## X+Y

Sub_sharp : LEMMA
x # X AND y ## Y = x-y ## X-Y

Neg_sharp : LEMMA
X ## X = X ## -X

Mult_sharp : LEMMA
x #t X AND y ## Y = x*y ## X*Y

Zeroless?(X): bool = X > 0 OR X <0
Div_sharp : LEMMA

Zeroless?(Y) AND

x ## X AND y ## Y = xly ## XIY

Abs_sharp : LEMMA
X ## X = abs(x) ## abs(X)

Sqg_sharp : LEMMA
X ## X = sq(x) ## sq(X)

Pow_sharp : LEMMA
X ## X = x'n ## X'n

END Interval

2.2 Square root and trigonometric functions PVS Listing 3 Inclusion properties (Il)
Sart_sharp : LEMMA

The square root and the trigonometric functions are im- X > 0 AND
plemented by approximation series. A PVS library of ap- x ## X — sqri(x) ## Sqrt(X,n)
proximations was originally developed by one of the au-
thors for the verification of an algorithm for aircraft con- Sin_sharp : LEMMA
flict detection [14]. It was completed and extended with X ## X = sin(x) ## Sin(X,n)

logarithm, exponential and arc tangent functions by David
Lester. The approximation library is part of the NASA Lan-
gley PVS libraried.

Cos_sharp : LEMMA
X ## X = cos(x) ## Cos(X,n)

The basic idea'is to prov?de for gach real functipn Tan_sharp : LEMMA
R — R, parametric algebraic functions: (R,N) — R Tan?(X) AND
andf : (R,N) — R, such that for alk;, n x ## X = tan(x) ## Tan(X,n)
flan) < f@) < flan), €y
flzn) < é(IJH' 1), @ Let e(z1,...,2,) be a real expression with variables
flz,n+1) < flx,n), 3 Z1,...,%n, ande(xy,...,xy,) be the interval expression
lim f(z,n) = f(x) = lim f(z,n). (4) corresponding te (for a pre-determined approximation pa-
n—0o0 ™ n—00 rameter), where; € x;, forl <i < n.
Formula (1) states that andf are, respectively, lower and e The proof rulesharp automatically discharges goals
upper bounds of’, and formulas (2), (3), and (4) state that of the form
these bounds can be improved, as much as needed, by in- T1 € X1y, Tn € Xn

creasing the approximation parameterFurthermore, we
require thatf and f are closed for rational numbers.

For eachf, the corresponding parametric interval func- using the inclusion lemmas in Listing 2 and Listing 3.
tion f is defined as follows:

e(r1,...,xy) € €(X1,...,Xn)’

e Lety be arational interval. The proof ruiastint
automatically discharges goals of the form

r1 €X1y...,Lp € Xp
e(Il,...,In) ey

f(x,n) = |[f(x,n), f(X,n)], if fisincreasing
n), f(x,n

fan) = [f(®)

If f is neither increasing nor decreasing, as in the case of

)], if fis decreasing

)

trigonometric functionsf is defined by case analysis on by showing thae(zy, ... ’x”). € e(xi,... ’.X“). us
.) : : ing sharp , and then evaluating the numerical interval
subintervals that are increasing or decreasing. The param- :
o expression
etern sets the accuracy of the approximations. In a real
e(x1,...,Xn) C y.

numerical problem, this parameter is set in advance by an
external program that explores in an efficient way a vast o The proof rulgjoint ~automatically discharges goals

number of values before deciding for the best one. This is of the form
one of the functionalities of the C++ library presented in

. r1 €X1y...,Lp € Xp
Section 5. ,

The definitions of the square root and trigonometric in- e(21,---,2n) €y
terval operations satisfy the inclusion properties in List- by showing that
ing 3. Appropriate preconditions such ¥ > 0 and)
Tan?(X) guarantee that the operatiosgrt andtan are T1€X1,. 5T €EXj,. .., Tn € Xp
well-defined. e(T1,...,y) €Y ’
. and
2.3 Strategies
Tl €X1,...,0; €Xi,... 2, € Xn
e(r1,...,2,) €y ’

Three basic strategies are provided by Intergakrp |,
instint , andjoint . provided that (L)x; = x;’ U x;” and (2)x;’ andx;”

3Available fromhttp://shemesh.larc.nasa.gov/fm/ftp/ overlap. Appropriate parameters tell the strategy how
larc/PVS-library/pvslib.html) to selectz;, x;’, andx;".

2.4 Example

The file fair.pvs , in Listing 4, includes the lemma
fair _approx that states

Vo e[0,1]: o x (1—z)€l0,1].

PVS Listing 4 Toy example

% fair.pvs
fair : THEORY
BEGIN

fair_approx : LEMMA
FORALL (x:real):
x ## [|0,1]] IMPLIES
x*(1-x) ## [|0,1]]

%]|- fair_approx : PROOF (instint) QED

END fair

The PVS theorem prover is generally used in interactive
mode. However, batch proving is supported in PVS by the
package ProofLité. Proof scripts are written as comments
using the special comment symi#l- . In this case, the
interval proof strateginstint is associated to the lemma
fair _approx . The filefair.pvs is proof checked in
batch mode with the commammloveit

$ proveit -package Interval fair.pvs
After a few seconds, the following message is displayed:

Theory totals:
1 formulas, 1 attempted, 1 succeeded

3 Sharper Bounds by Interval Splitting

Lemmafair _approx of Section 2.4 is very inaccurate
as it boundse x (1 — z), with « € [0, 1], by [0, 1] instead
of [0, 1]. This is due to decorrelation an In many cases,

the easiest way to reduce decorrelation is to divide the input
interval in many subintervals and to evaluate the expression

on these subintervals separately.
For example, the interval, 1] could be evenly divided
into 16 intervals| =, ZtL]. Each arithmetic evaluation is a

167 16
subset of 0, 5] thatis a little larger than the optim#), 1].

’ 32

The C++ library presented in Section 5 finds the same

degree of accuracy with only 8 intervals:
6 7

o L) |

4Available from http:/research.nianet.org//munoz/
ProofLite

s
16716’

8 9 9 10 5 3 3 1

[167 16] ’ {16’ 16} ’ [8’ 4} ’ [4’] ’
Indeed, the PVS fileoy.pvs in Listing 5 is automatically
generated from the original problem and some extra param-
eters. In this case, 16 lemmas are necessary to guarantee
the required accuracy), =5 |. LemmasToyl0 andToyl1
prove the case of the subintervd, ;| and [, 2], re-
spectively, using the proof rulestint . LemmaToyC1
proves the case of the subinteryal 2| by using the proof
rule joint . The strategy shows thdo, 3| [0,1] U
[1. 2], and then applies lemma®yl0 andToyll . The
final lemmaToyC7 proves the result on the whole interval

[0, 1].

PVS Listing 5 Toy example (revisited)

% toy.pvs
toy : THEORY
BEGIN
X VAR real
Toyl0 : LEMMA
x ## [|0,4/16]] IMPLIES
X * (1 - x) ## [|0,9/32]]
%]|- Toyl0 : PROOF (instint) QED

Toyll : LEMMA
x ## [|4/16,6/16]] IMPLIES
X * (1 - x) ## [|0,9/32]]
%|- Toyll : PROOF (instint) QED

ToyCl : LEMMA
X ## [|0,6/16]] IMPLIES
X * (1 - X) ## [|0,9/32]]
%|- ToyCl : PROOF
%|- (joint "Toyl0" "Toyll")
%|- QED

ToyC7 : LEMMA
X ## [|0,16/16]] IMPLIES
X * (1 - X) ## [|0,9/32]]

%|- ToyC7 : PROOF
%|- (joint "ToyC6" "Toyl7")
%|- QED

END toy

Proof checking the fileoy.pvs in batch mode reports:
$ proveit -package Interval toy.pvs

Theory totals:

16 formulas, 16 attempted, 16 succeeded

4 Taylor's Series Expansions sum of the width of intervals(®) andi(®). Therefore, the
splitting technique presented in the previous section would
Taylor's Theorem yields the following rule on interval require more thaw,, /ulp subintervals to verify thag(®)

arithmetic. Letz,a € x andxq, ..., x, be a list of inter- is no wider than one ulp. No proof assistant can guarantee
vals, such a large number of lemmas in a reasonable time.
dd;f (a) € x;,for0<i<mn, and To r_educe decorrelation, we use Taylor’.s se_ries expan-
Vy € x : sznwf (y) € xn sion withz = ¢, n = 1, a equal to the mldp'omt oﬁb,
L —— x = ®, x9 = e([a]), andx; = €'(P), wheree’ is the in-
flz) € X (% x (x —a)?)/i!

terval function corresponding to the first derivativeeofVe
This rule is implemented by the stratetpylor in the get

library Interval. In this section, we show how this rule may

be used to reduce decorrelation in a real example. e(¢) € e(a)+ (2 —a)e(P), (5)
The function as both (1e(a) € e([a]) and 2)Vy € : €'(y) € &'(P)
(6) = a trivially hold. Decorrelation on Formula (5) is reduced to
1+ (1— f)2tan®¢’ first order with respect to the origina(®).

] Further reduction of decorrelation could be obtained by
wherea and f are constants defined by WGS%appears increasing the order of the Taylor series expansion, e.g., the
in the implementation of aircraft navigation algorithms. In- second order expansion yields

deedy(¢) is used to translate aircraft geodesic coordinates,
as calculated by global positioning systems, to Cartesian co- e()
ordinates used, for example, by geometric conflict detection

and resolution algorithms [3]. . However, note that(¢) is a least square approximation of
For efficiency reasons, one may want to approximate the,.(4y on Chebyshev's polynomials [18] andd) is a rela-

functionr(¢) by polynomial tively smooth function. Therefore, the first order expansion,

€ e(a)+ (®—a)(a)+ — e (®).

4439091 along with interval splitting, is sufficient in this case to show
Hg) = ——+(2 — ¢%)x the required accuracy.
Listing 6 illustrates the PVS definitions used in this ex-
9023647 9 9 s . .)
(+ (¢, — ¢7) % ample. As a convention in PVS, real functions are written in
4 lowercase, and interval functions are written in uppercase.
<13868737 + (42, — ¢?)x In particular,r , hat _r, ande correspond te, #, ande, re-
64 " spectively, whereak, hat _R, andE correspond te, , and
<13233647 + (62 — ¢)x e, respectively. PVS is a strongly typed language where ev-
2048 m ery function has to be well-defined. The user-defined type
—1898597 9 9 Phi rules out valuephi wherer(phi) is undefined. In
(16384 + (P — 97)x contrast to real operations, interval operations are defined

— 6661427 everywhere. The empty interval acts as an exceptional value
131072))))) in cases where the real function is undefined.

Contrary to the approach described in [19], we do not
whereg,,, = 715/512 Z 807/180 and¢ € [0, ¢,,], as the have to generate a new Taylor approximation for each sub-
latitude is assumed to be betweand80°. range. By using an interval-based Taylor expansion, the

The coefficients of the polynomial approximation and same expression can be reused for all the subranges. We
2 are stored exactly using IEEE single precision. Thus, do not suffer from the Taylor coefficients being irrational

the objective is to show thé{%, where numbers, they are simply given by interval expressions in-
volving rational functions. Relying on rational interval
e(p) =r(¢p) — i(¢), arithmetic leads to conceptually simpler proofs: one single

global Taylor expansion has to be validated, and the proofs
is bounded byt.36 x 1079, i.e., about an ulp of the exact for all the subranges simply consist in an interval instantia-
value. tion of this expansion.
Letr(®), #(P), ande(P) be the interval expressions cor-
responding ta(¢), 7(¢), ande(¢), respectively, and be
an interval such thap € ® C [0, 22]. Decorrelation on

7 512
e(®) yields that for any intervad, e(®) is wider than the

5 A C++ Library for Real Applications

The splitting technique presented in Section 3 is imple-
5Available fromhttp://www.wgs84.com . mented by an external library written in C++. Given a nu-

PVS Listing 6 FunctionsR, 7, andE in PVS

a : real = 6378137

f : real = 1000000000/298257223563
umf2 s real = sq1 - f)

sgmax : real = 511225/262144

Phi : TYPE = {x: real |
X ## [|0,715/512[] }

r(phi:Phi) : real =
a / sqrt(l + umf2 * sq(tan(phi)))

R(PHI:Interval) : Interval =
a / Sgrt(1 + umf2 * Sq(Tan(PHI,4)),7)

hat_r(phi:Phi) : real =
(4439091/4) + (sgmax - sq(phi)) * (
(9023647/4) + (sgmax - sq(phi)) * (
(13868737/64) + (sgmax - sq(phi)) * (
(13233647/2048) + (sgmax - sq(phi)) * (
(-1898597/16384) + (sqmax - sq(phi)) *
(-6661427/131072)))))

hat_R(PHIl:Interval) : Interval =
(4439091/4) + (sgmax - Sq(PHI)) * (
(9023647/4) + (sgmax - Sq(PHI)) * (
(13868737/64) + (sgmax - Sq(PHI)) * (
(13233647/2048) + (sgmax - Sq(PHI)) * (
(-1898597/16384) + (sgmax - Sq(PHI)) *
(-6661427/131072)))))

e(phi:Phi) : real =
r(phi) - hat_r(phi)

E(PHLl:Interval) : Interval =
R(PHI) - hat R(PHI)

ties and generate the lemmas for a local optimal solu-
tion.

e Publicly available C++ libraries, such as Boost [1] and
GMP’s multiple precision rational arithmetic [5], can
be used.

Although the C++ library checks that the reported inter-
vals are sufficiently accurate compared to the one that are
produced using exact rational arithmetic, the C++ library
does noformally guarantee the result. The library provides
an efficient mechanism to finely tune the input needed by
PVS. The actual proof guarantee is provided only by the
proof checker.

The utility gmake from Sun Grid Engine [20] was used
to automatically target clusters of computers. The cluster
used in this example consists of 48 processors 2.60 GHz
Intel Xeon. A machine with 116 processors (1.80 GHz
AMD Opteron) will soon be available. As this work is mas-
sively parallel, it will scale with no problem. The context
file maintained by PVS is located on the local hard-drive of
each node to enhance performances.

The splitting technique applied to Formula (5) starts with
100,000 subintervals to guarantee that the relative error is
bounded byt .36 x 10~5. The trigonometric functions must
be approximated to thé¢" term and the square root to the
7" term. In total 9,935 intervals were considered. For each
interval, 3 lemmas and their respective proof scripts were
automatically generated by the C++ library. As expected,
the final lemma in this development reads:

PHI : Interval = [|0,715/512]]

Rl : LEMMA
FORALL (phi:real) :
phi ## PH —
e(phi) / r(phi) ##

merical problem, the library finds an appropriate subinterval
division and generates proof obligations, in the form of lem-
mas, and proof guarantees, in the form of proof scripts, that . .
yield a required accuracy. Lemmas and proofs are groupeo6 Conclusion and Perspective
in files such that they can be processed in parallel by PVS.
The library also sets, as needed, the approximation parame- The examples presented in Sections 3 and 4 could have
ters of the square root and trigonometric functions. been handled in HOL-lightusing one of the tools presented
An external library has several advantages over a PVSin [6]. According to Sturm’s theorem [10, p. 434] that de-
proof strategy encoding interval splitting: velopment is more efficient on these specific examples but it
is limited to problems that can ultimately be approximated
y polynomial functions. On the other hand, the techniques
presented here can seamlessly guarantee rational approx-
¢ Porting this work to another proof assistant is possible imations or even arbitrary programed approximations as
as soon as a comparable interval library is available long as they are piecewise continuously differentiable (for
and batch proving is supported on the alternate proofthe developments of Section 4).
assistant.

[|-136/1000000000,136/1000000000]]

e The generation code does not need to understand th
arcane of PVS internal structures.

) o o SAvailable from http://www.cl.cam.ac.uk/users/jrh/
e A C++ library can efficiently explore many possibili- hol-light

In summary, the tools allow users to state and formally [9] R. B. Kearfott. Interval computations: Introduction, uses,

verify numerical properties in PVS with a minimal interac- and resourcescuromath Bulletin2(1):95-112, 1996.
tion with the theorem prover. No PVS expertise is required [10] D. E. Knuth. The Art of Computer Programming: Seminu-
in most cases. merical Algorithms Addison-Wesley, 1997. Third edition.

[11] L. Lamport. How to write a proofAmerican Mathematical
Monthly, 102(7):600-608, 1993.

J. Lions et al. Ariane 5 flight 501 failure report by the
inquiry board. Technical report, European Space Agency,
Paris, France, 1996.

K. Makino and M. Berz. Taylor models and other validated
functional inclusion methoddnternational Journal of Pure
and Applied Mathematicg(4):379-456, 2003.

e Imolementation of latest developments on Tavior's [14] C.Muhoz, V. Carr@éo, G. Dowek, and R. Butler. Formal ver-
P P y ification of conflict detection algorithm#nternational Jour-

moldels'[13], _and mix Taylor's models and floating nal on Software Tools for Technology Transfé(3):371—
point arithmetic [17]. 380, 2003.

Research is conducted to study the feasibility of enhanc-
ing the prototypes with some of the following features: [12]

e Floating point arithmetic rather than rational arith-
metic as developed in [2]. [13]

e Use of high speed multiple precision techniques.

. . [15] A. Neumaier. Interval methods for systems of equations
The tools are currently being used to check numerical prop- Cambridge University Press, 1990.

erties of aircraft navigation algorithms developed at the Na- [16] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype

tional Institute of Aerospace (NIA). Verification System. In D. Kapur, editat1th International
Conference on Automated Deduction (CAD&)lume 607

of Lecture Notes in Atrtificial Intelligen¢cepages 748—752,
ACknOW|edgment Saratoga, NY, June 1992. Springer-Verlag.
[17] N. Revol, K. Makino, and M. Berz. Taylor models and
Proofs of Sections 4 and 5 were checked on high perfor- floating-point arithmetic: proof that arithmetic operations
mance clusters set up and maintained by the Reso research are validated in COSYJournal of Logic and Algebraic Pro-
project of the LIP computer science laboratory. gramming 2005. To appear.
[18] T. Rivlin. Chebychev polynomialsJohn Wiley & Sons,
1990.
References [19] J. Sawada. Formal verification of divide and square root
algorithms using series calculation. 81d International
[1] H. Bronnimann, G. Melquiond, and S. Pion. The Boost in- Workshop on the ACL2 Theorem Prover and its Applica-
terval arithmetic library. IrReal Numbers and Computers tions, pages 31-49. University of Grenoble, 2002.
pages 65-80, Lyon, France, 2003. [20] Sun MicrosystemsSun Grid Engine — Administration and
[2] M. Daumas and G. Melquiond. Generating formally certi- User's guide 2002. Version 5.3. .
fied bounds on values and round-off errorsRkeal Numbers [21] A. Tiwari, N. Shankar, and J. Rushby. Invisible formal meth-
and ComputersDagstuhl, Germany, 2004. ods for embedded control syster®soceedings of the IEEE
[3] G. Dowek, A. Geser, and C. Niioz. Tactical conflict de- 91(1):29-39, Jan. 2003.

tection and resolution in a 3-D airspace. Rroceedings of
the 4th USA/Europe Air Traffic Management R&DSeminar,
ATM 2001 Santa Fe, New Mexico, 2001. A long version ap-
pears as report NASA/CR-2001-210853 ICASE Report No.
2001-7.

[4] D. Gage and J. McCormick. We did nothing wrorase-
line, 1(28):32-58, 2004.

[5] T.GranlundThe GNU multiple precision arithmetic librayy
2004. Version 4.1.3.

[6] J. Harrison. Floating point verification in HOL light: the
exponential function. Technical Report 428, University of
Cambridge Computer Laboratory, 1997.

[7] Information Management and Technology Division. Patriot
missile defense: software problem led to system failure at
Dhahran, Saudi Arabia. Report B-247094, United States
General Accounting Office, 1992.

[8] L. Jaulin, M. Kieffer, O. Didri, and E. Walte\pplied inter-
val analysis Springer, 2001.

"The PVS library Interval described in this paper is available from
http://research.nianet.org/"munoz/Interval

